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Abstract. The efficient management of geographically distributech danters
has become an important issue not only for big companie®otinatseveral sites,
but also due to the emerging of inter-Cloud infrastructuhes allow heteroge-
neous data centers to cooperate. These environments gpextedented avenues
for the support of a huge amount of workload, but they needéfiaition of novel
algorithms and procedures for their management, wheratsitif is a priority.
The complexity derives by the size of the system and by the heeaccom-
plishing several and sometimes conflicting goals, amonghvHoad balancing
among multiple sites, prevention of risks, workload coitsdlon, and reduction
of costs, consumed energy and carbon emissions. In this pdperarchical ap-
proach is presented, which preserves the autonomy of sitagéecenters and at
the same time allows for an integrated management of heteeays platforms.
The framework is purposely generic but can be tailored tosffeific require-
ments of single environments. Performances are analyzed $pecific Cloud
infrastructure composed of four data centers.
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1 Introduction

The ever increasing demand for computing resources halaganies and resource
providers to build private warehouse-sized data centers offload applications to
the data centers owned by a Cloud company. Overall, datersergquire a significant
amount of power to be operated. The total electricity dentdrtthta centers increased
by about 56% from 2005 to 2010, and the electricity usagewateal for about 1.5%
of the worldwide electricity usage in 2010 [6], which is coangble to the aviation
industry. The financial impact for the data center managénsealso huge, since a
data center spends between 30% to 50% of its operationahsggeward electricity.
The efficient utilization of resources in these data cengdigerefore essential to reduce
costs, energy consumption, carbon emissions and alsotossmbigh quality of service
to users.

The virtualization technology allows multiple Virtual Maioes (VMs) to be run on
the same physical server. Although this helps to increasefficiency of data centers,



the optimal distribution of the applications to serversigltill an open problem, espe-
cially in large and dynamic systems. The problem is even rooneplex in geographi-
cally distributed data centers, whose adoption is rapiatydasing. They are deployed
by major cloud service providers, such as Amazon, GoogteMiorosoft, to match the
increasing demand for resilient and low-latency cloud ises; or to interconnect het-
erogenous data centers owned by different companies, indizalled “Inter-Cloud”
scenario. In such environments, data centers offer diffemad time-varying energy
prices, and workload variability is experienced both witkingle sites and across the
whole infrastructure.

The dynamic migration of workload among data centers hasrhea@an opportu-
nity to improve several aspects: better resiliency anavait management, improved
load balancing, and exploitation of the the “follow the mbparadigm, i.e., move the
workload where the energy is cheaper/cleaner and/or @palirsts are lower. Inter-
site migration is enabled by the availability of a much highetwork capacity, thanks
to both physical improvements (e.g., through techniqueb sis wavelength division
multiplexing) and logical/functional enhancements (gle adoption of Software De-
fined Networks). Reliable and low-latency connections camised to shift significant
amount of workload from one site to another through dedéitaetworks or even via
regular Internet connections.

Nonetheless, these advancements do not reduce the cotmiettie involved is-
sues, among which: determine whether the benefits of wailkizigrations may over-
come the drawbacks, from which site and to which site to niégrahat specific portion
of the workload should be migrated, how to reassign the rtilggavorkload in the tar-
get site, etc. Some significant efforts have been done iratleis. The electricity price
variation, both across time and location, is exploited tuce overall costs using dif-
ferent strategies, among which: the Stratus approach fdbég Voronoi partitions to
determine to which data center requests should be routedlgforithm proposed by
Mehta et al. [9] assigns virtual machines to servers usingnatcaint programming ap-
proach; Ren at al. [10] use an online scheduling algorithset@n Lyapunov optimiza-
tion techniques. The algorithms presented in [7] and [Hl&athe problem considering
the user’s point of view, and aim to choose the most convédigsa center to which the
user should consign a service or VM.

However, the cited approaches, as well as many others, aswlve the optimiza-
tion problem as a whole, in a centralized fashion, undeigtia risk of originating two
main issues: (i) algorithms of this kind may be poorly scidaboth for the number of
parameters that they must consider and for the huge sizegfrtiblem, as it may in-
volve tens of thousand of servers; (ii) they generally asstirat all sites share the same
strategy and algorithms, which may hamper their autonorhg.ffeed for autonomous
management is self-explanatory in multi-owned data cenérd is crucial even within
a single-owner infrastructure, for example in the case dinat or several sites are the
former asset of an acquired company, or are hosted by céelbozulti-tenant facilities.

A self-organizing hierarchical architecture is proposef8i, but it is limited to the
management of a single data center. This paper presentsiGMud, a hierarchi-
cal framework for the distribution and consolidation of therkload on a multi-site
platform. The framework allows for an integrated and honmegeis management of



heterogeneous platforms but at the same time preservestth@oany of single sites. It
is composed of two layers: at the lower layer, each site aditpbwn strategy to dis-
tribute and consolidate the workload internally. At the eplayer, a set of algorithms
—shared by all the sites — are used to evaluate the behasorglé sites and distribute
the workload among them, both at the time that new applinat\Ms are assigned and
when some workload migration from one site to another is cebappropriate. At each
site one server is elected as point of contact (PoC) anddiesilty sends to other sites’
PoCs a number of parameters that summarize the state oftéh@assibly including
the overall utilization of resources, the efficiency of cargtion, the energy costs, the
amount ofCO, emissions, etc. Upon reception of such data from the ottes,she PoC
executes the upper layer algorithms to: (i) determine ttgetadata center to which a
new application should be assigned; (ii) check if the woakilias well balanced among
the different sites, and (iii) trigger migration of applitms when needed. This strat-
egy resembles the one used to cope with traffic routing inrktermet, where a single
protocol — Border Gateway Protocol — is used to intercondéfdgrent Autonomous
Systems (ASs), while every AS is free to choose its own padte®.g., RIP or OSPF
— for internal traffic management.

The reminder of the paper is organized as follows: Sectione&ciibes the
EcoMultiCloud architecture and illustrates the roles ahpbctives of two layers; Sec-
tion 3 describes the algorithm used by the upper layer foradsgnment of Virtual
Machines; Section 4 analyzes the performance of the assighatgorithm in terms
of carbon emissions and load balancing and compares EciaVutd with a reference
algorithm; Finally, Section 5 concludes the paper.

2 Architecturefor Inter-DC Workload Distribution

This section describes the hierarchical architecture aMidtiCloud for the efficient
management of the workload in a multi-site scenario. Thhitacture is composed of
two layers: (i) theupper layer is used to exchange information among the different sites
and drive the distribution of Virtual Machines among theadagnters and (ii) thiewer
layer is used to allocate the workload within single data centers.

EcoMultiCloud extends the decentralized/self-orgamjzapproach, recently pre-
sented in [8], for the consolidation of the workload in a $indata center. The single
data center solution, referred to as EcoCloud, dynamicailysolidates Virtual Ma-
chines (VMs) to the minimum number of servers, and allowsrdrmeaining servers
to enter low consuming sleep modes. With EcoCloud key detssiegarding the local
data center are delegated to single servers, which autamymatecide whether or not to
accommodate a VM or trigger a VM migration. The data centemagar has only a co-
ordination role. In a similar fashion, at the upper levelta tulti-site EcoMultiCloud
architecture, most of the intelligence is left to singleadaénters which, for exam-
ple, decide which information is relevant and should bevéedid to other data centers,
which portion of the local workload should be migrated elsere, etc. Coordinating
decisions, for example about the necessity of migratingraauat of workload from
one site to another, are taken combining the informaticatedl to single data centers.
Beyond decentralization, a key feature of EcoMultiCloudtssmodularity: provided



that the interface between the lower and the upper layeesgpved, each layer is free
to modify the respective algorithms and their implementatiAt the lower layer, each
data center is fully autonomous, and can manage the intarmdlload using either
EcoCloud or any other consolidation algorithm. So diffédata centers can adopt dif-
ferent internal algorithms. On the other hand, the uppegrlajgorithms may be tuned
or modified without causing any impact on the operation oflsirsites.

PoC

i

Fig. 1. EcoMultiCloud scenario: the PoCs of the different data eenexchange high level in-
formation about the state of local data centers. Such irdtion is used, for example, to decide
which site should accommodate a new VM.

The reference scenario is depicted in Figure 1, which shows ifiterconnected
data centers. Each data center elects a single Point of @¢R@C), a software that in
the most typical case may be deployed on the same host as ttageraf the local vir-
tualization infrastructure, e.g., the vCenter in the cdséMware. The PoC integrates
the information coming from the lower layer and uses it tolenpent the functionalities
of the upper layer. The PoC is required to: (i) communicatd wie local data center
manager in order to acquire detailed knowledge about theecustate of the local
data center, for example regarding the usage of host res®ara the state of running
VMs; (ii) extract relevant high level information about thite of the data center; (iii)
transmit/receive such high level information to/from &k tother PoCs; (iv) execute the
algorithms of the upper layer to combine the collected imfation and take decisions
about the distribution of the workload among the data centesr example, the assign-
ment algorithm is used to decide to which data center a new Wddilsl be assigned.
Once the VM is delivered to the target site, this will use thwwdr layer algorithms to
assign the VM to a specific host.

The framework is designed so that all the PoCs are able taiexére upper layer
algorithms and, for example, choose the target DC for a VMioated locally. This
requires an all-to-all data transmission among the PoQghimiis not an issue due to
the relatively low number of interconnected sites and thg #imount of transmitted



data. Indeed, in a multi-site scenario the choice of a siogtedination point would be
unappropriate for both technical and administrative reaso

Since the single data centers are autonomous regardindnthieecof the internal
algorithms for workload management, this paper focuseseratgorithms of the up-
per layer. At least three algorithms must be executed at Bach (i) an assignment
algorithm that determines the appropriate target dateecdat each new VM; (ii) a
redistribution algorithm that periodically evaluates wie¥ the current load balance is
appropriate and, if necessary, decides whether an amowmrédoad should be mi-
grated to/from another site; (iii) a migration algorithnatidetermines to which target
site or from which source site the workload should be migtate

The assignment algorithm is the core one: it has the prin@eyaf distributing the
workload of new VMs on the basis of a set of objectives declethe managementand
pertaining to costs, consumed energy, carbon emissioad Halancing, etc. The other
two algorithms are tailored to the dynamic redistributidrihe workload. They share
the same objectives of the assignment algorithm, but mayitek account additional
considerations, among which: the tolerance admitted oath&vement of the objec-
tives, the limits on the frequency of migrations and on the@ant of migrated data, the
balance between benefits and costs related to migration§retcwork focuses on the
assignment algorithm and leaves the analysis of workloggation to future research.

3 Multi-Site Assignment Algorithm

As mentioned in the previous section, a key responsibifityhe PoC is to analyze de-
tailed data about the local data center and summarize relevfarmation that is then
transmitted to remote PoCs and used for the assignment disdriteution of work-
load. The nature of the high level information depends orothjectives that must be
achieved. Some important goals are:

1. Reduction of costs. The cost associated to the executiargven workload de-
pends on many factors, among which the cost of power neededfigputation, for
cooling and for power distribution, the costs related tdf s&ervers maintenance,
etc. An important element to consider is that the cost oftetgty is generally
different from site to site and also varies with time, everadmour-to-hour basis,
therefore the overall cost may be reduced by shifting postiof the workload to
more convenient sites;

2. Reduction of consumed energy. The amount of consumed\eisegenerally eas-
ier to evaluate than the costs, as moderns data centers @pped with sensors
that monitor the power usage in computational resources tdtal power may be
obtained by multiplying the power consumed for computatigrihe PUE (Power
Usage Efficiency) index;

3. Reduction of carbon emissions. Companies are todaygyr@mcouraged to re-
duce the amount of carbon emissions, not only to compel tg kmd rules, but
also to advertise their green effort and attract custonietsare increasingly care-
ful about sustainability issues;

4. Quality of service. The workload must be distributed withoverloading any sin-
gle site, as this may affect the quality of the service pesreby users. Moreover,



quality of service may be improved by properly combining asdigning appli-
cations having different characteristics, for examplelJ&i®und and RAM-bound
applications;

5. Load balancing. In a multi-DC environment, especialipdnaged by the same or-
ganization, it may be important to balance the load distefito the different sites.
Among the rationales are: a better balance may help imph@/essponsiveness of
the sites, decrease the impact on physical infrastructerg ~-in terms of cooling
and power distribution — help to prevent overload situation

6. Inter-DC data transmission. In some cases it is more effi¢d assign a VM to the
local data center, instead of delivering it to a more cormeniemote data center,
depending on many factors, among which the amount of dathlmsthe VM, the
available inter-DC bandwidth and the type of applicatioosthd by the VMs. For
example, choosing a local data center is more convenieheicase that the VM
hosts a database server, much less if it runs a Web servpegiaBy in the frequent
case that Web services are replicated on several datasenter

The goals are not independent from each other: for exampégat costs depend
on the consumed power, while a good load balance may helpimghe quality of
service. All the mentioned goals are important, yet difféi@ata centers may focus on
different aspects, depending on the specific operatingitond and on the priorities
prescribed by the management. The assignment algorithonided in the following is
specifically devised for the case in which the two primaryegliyes are the reduction
of overall carbon emissions and the load balancing. Thesegtvals are chosen be-
cause they are representative of two opposite needs, thifaregptimizing the overall
efficiency and the need for guaranteeing the fairness amatagcginters. However, the
assignment algorithm can be easily adapted to a differeitelof the objectives.

For the described scenario, the PoC of each data centectsotigo kinds of in-
formation: the overall utilization of the data center res®s, separately computed for
each resource type (CPU, RAM, disk memory etc.) and the cdidmtprint rate of the
servers. The overall utilization of CPU is computed as thal tamount of CPU uti-
lized by servers divided by the CPU capacity of the entira danter. The same type
of computation is done for the other hardware resourcesbohtiteneck resource for a
data center is the one with the largest utilization. The @arfiootprint rate of a server
S, Cs, is measured in Tons/MWh [5]. The contribution of a servecadhon emissions
is computed by multiplying the carbon footprint rate by timergy it consumes. The
overall carbon footprint of a data center can then be appratéd by summing the
contributions of the servers and then multiplying the atediquantity by the data cen-
ter PUE, which allows the contribution of the physical irsfraicture to be considered.
When assigning a VM, the target data center should be chasar to minimize the
incremental increase of the carbon footprint and at the samakeep/improve the load
balance among the data centers. To this aim, a PoC does rbtakeow the carbon
footprint rate of all the servers of remote sites: it onlyd®to know, per each site, the
best available carbon footprint rate, i.e., the minimum rate among the servers that are
available to host the VM. In fact, if the assignment algarithof local sites share the
same goals, the VM will be assigned to a server with that vafube carbon footprint
rate.



Following these considerations, the assignment algoritguires that the PoC of
a servel transmits to the others three very simple pieces of dat#héitilization of
the bottleneck resource — denotedas(ii) the best available carbon footprint rate of a
local servergs, and (iii) the data center PUE. The last two parameters mapibined,
and the carbon parametgrof a data centeris defined as:

Ci = PUE; - min{cs| server sisavailable} Q)

In a data center many servers have the same characteffistiexample the servers
included in the same rack/cluster. Therefore, the comjoumtatf C; can be simplified
by considering the carbon emission rate of each clustesadsbf each server, and by
evaluating the i's available” condition for entire clusters as well. Knowing the values
of G andU; for each remote data center, the PoC can now choose the lpstdata

center for a VM. For each data centgthe functionf;mgn is computed as follows:
i G Ui
fslylssign:B'C +(1*B)'Um (2

In the expression, values 6f are normalized with respect to the maximum value
communicated by the data centers, and the same is doné&Jwiiihe two mentioned
goals — reduction of carbon emissions and load balancing-waighted through a
parameterB, having value between 0 and 1. After computing the values.giyn
for each data center, the VM is assigned to the data centénchéve lowest value.
Depending on the value @8 this may correspond to giving higher priority to the
reduction of carbon emissions (valuestloser to 1) or to the fair balance of load
(values of3 closer to 0). Expression (2) can be easily generalized tac#ses that
more or different objectives are chosen.

function EcoMultiCloud-AssignmentAlgorithnf)
while VM arrives

for each remote datacent®C;
Request;,U; parameters

end for

Crex = Max{C;j|i =1---Npc}

Umax = Max{U;| i =1---Npc}

for each DC; : DC; is not full, that isU; < U,
fassion =B oo + (1-B) - 25

end for ‘
DCrarget = DC;j such thatf jog g, = Min{ figgn| i = 1---Noc}
Assign VM toDCiarget
end while
end function

Fig. 2. The EcoMultiCloud assignment algorithm.



Figure 2 reports the pseudo-code used by a data center Pddsethe target
data center, among tHépc data centers of the system, for a VM originated locally.
First, the PoC requests the valuedpfandC; to all the remote data centérdhen, it
computes the maximum values of both parameters, for theal@ation, and computes
the expression (2) for any data center that has some spaaeitgp.e., for which the
utilization of the bottleneck resource does not exceed argthresholdJy,. Finally,
the VM is assigned to the data center that has the lowest vhlerepression (2). Once
consigned to the target data center, the VM will be allocaéted physical host using
the local assignment algorithm. This paper does not focesipally on the inter-DC
migration of VMs. However the same algorithm, or a variardyrbe used to determine
the target data center of a VM that is being migrated.

4 Performance Evaluation of the Assignment Algorithm

To correctly evaluate the performance of the EcoMultiClagdignment algorithm, it
is necessary to prove that the hierarchical approach — diogpto which the VM is
assigned in two steps, first to a target data center, then tysiqal host — does not
cause a performance degradation with respect to a singée &égorithm that has full
visibility about all VMs and servers. Such a confirmation Wbauggest the choice
of the hierarchical approach, which offers notable adwgegan terms of scalability,
autonomy of sites, overall administration, informationmagement.

To this aim, we take as a reference a single level/centdhlggsignment algo-
rithm presented and evaluated in [5]. The reference alyoritalledECE (Energy and
Carbon-Efficient VM Placement Algorithm) considers all thasters of the distributed
architecture and sorts them with respect to the valu€dfe x carbon footprint rate).
Each VM is assigned to the available cluster with the mininuatae and then, within
that cluster, is assigned to the most power-efficient semdb] it is shown that this
algorithm performs better than a number of other commonisies based on the First
Fit approach. Comparison is made to the hierarchical Ect®loud approach, where
the upper layer assignment algorithm is the one describ8edation 3, while the lower
layer algorithm iSECE, applied not the whole system but to single data centers.

For a fair comparison we consider the same scenario as [ijfetir interconnected
data centers having values of PUE and carbon footprint sateforted in Table 1. Each
data center includes two “rooms”, a rodhwith newer and more efficient servers and
a roomB with older and less efficient servers. A data center has desuadue of PUE,
but two different values of carbon footprint rate for the twoms.

Data about VMs and physical hosts was taken from the logs eflaRroof of Con-
cept performed by the company Eco4Cloud srl (www.eco4clmrd), spin-off from
the National Research Council of Italy, on the data centea tdlecommunications
operator. The data center contains 56 servers virtualizéd the platform VMware
vSphere 5.0. Among the servers, 38 are equipped with proc&son 24 cores and
100-GB RAM, and 18 with processor Xeon 16 cores and 64-GB RANMhe servers
have network adapters with bandwidth of 10 Gbps. The sehasted 992 VMs which

4As an alternative, values can be transmitted periodically push fashion. In both cases the
amount of transmitted information is tiny.



Table 1. PUE and carbon footprint rate of the four data centers in timsidered scenario.

Data cen teJ pug Carbon footprint rate (Tons/MWh)
Room A Room B
DC1 |1.56/ 0.124 0.147
DC 2 1.7| 0.350 0.658
DC3 1.9| 0.466 0.782
DC4 2.1| 0.678 0.730

were assigned a number of virtual cores varying between 18aamad an amount of
RAM varying between 1 GB and 16 GB. Servers and VMs were rafdit for all the
rooms of the considered scenario, and only the values of RidEEarbon footprint rate
were differentiated as described in Table 1. The most atllizsource in this scenario is
the RAM, therefore the RAM utilization of data centers is sidiered when computing
expression (2). A constraint imposed by the data centerradirators was that the uti-
lization of server resources cannot exceed 80%.aveeall load of the entire system,
used as a parameter in the evaluation, is defined as ratiebetthe total amount of
RAM utilized by the VMs and the RAM capacity of the system.
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Fig. 3. Total carbon footprint (a) and variability coefficient (§.\the overall load with different
values of the parameté.

The performances have been analyzed with an event-basadidavlator that has
been previously validated with respect to real data for tseof a single data center
[8]. The VMs are assigned one by one executing the descrissigranent algorithm
at the data center where each VM is located. Figure 3 showpdtfermance of the
assignment algorithm versus the overall load of the systenen using values of
equal to 0 (such a value means that the load balance is thegoaly, 0.25, 0.50, 0.75
and 1 (the only goal is the reduction of carbon footprint)eTivo plots report two
indices: the total carbon footprint (a) and the variabitibefficient (b). The latter is used
as an index for the load balance and is computed by consgigrenRAM utilization of



the four data centers and dividing the standard deviatiotheyverage. We prefer the
variability coefficient rather then the standard deviatiecause this helps to highlight
relative rather than absolute deviations with respecteamtrerage.

The performance of the single leM&CE algorithm is also reported for comparison.
As the two objectives are contrasting, a higher valug @fllows the carbon footprint
to be decreased, but at the expense of a greater load imbalérns interesting to
notice that the values obtained wifix1 are almost equal to those obtained with the
single level algorithm. This is consistent with the facttttize ECE algorithm does
not consider the load balance as an objective. More imptytahis means that the
hierarchical approach does not cause any performancedigigna regarding the two
considered metrics, which corresponds to the desired mhasg said at the beginning
of this section.

Depending on the management requirements, a proper val@ecah be set ac-
cordingly. For example, if a constraint is given either oa #umitted degree of load
imbalance or on the overall carbon emissions, the valy2a#n be set so as to respect
the constraint while optimizing the value of the other gddilis optimization analysis
is left to future work. In the following, we analyze the belmobserved with specific
values of3. Figures 4, 5 and 6 show the values of RAM utilization and carfiootprint
rate for the single data centers, with valuegafqual to 0, 0.5 and 1, respectively. From
Figure 4 we can analyze the case where the only goal to bevachie a fair load bal-
ance. Indeed, the servers are all utilized at the same lebealiever is the overall load,
as seen in Figure 4(a), while Figure 4(b) shows that the eefidiatprint is proportional
to the amount of emissions of the single data centers, adadeia Table 1. When the
two objectives must be balanced (case with0.5), the data centers are loaded with
different rates, as shown in Figure 5(a): for example, thetrafficient data center, DC
1, is loaded more rapidly than the others, while the dataecdd€ 4 is fully loaded
after the others are already utilized at the maximum allolseel.
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Fig.4. RAM utilization (a) and carbon footprint (b) of the four datanters vs. the overall load
with 8=0.
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Fig.5. RAM utilization (a) and carbon footprint (b) of the four datanters vs. the overall load
with 3=0.5.
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Fig. 6. RAM utilization (a) and carbon footprint (b) of the four datanters vs. the overall load
with 3=1.

Figure 6 focuses on the case in which we are only interestéteiseduction of
carbon emissions. The two plots show that the data centelsaded in an order that
corresponds to their efficiency. Even more, we can notidgliesorder is respected also
with reference to single data center rooms. For exampler, BI€ 1 is fully loaded, the
VMs are first assigned to Room A of DC 2, than to Room A of DC 3ntteeRoom B
of DC 2, and so on. It may be easily verified that this ordeofe#f the values of (PUE
x carbon footprint rates) of the different rooms, as repbite Table 1. It is noticed
that the curves of carbon footprint, in Figure 6(b), intetssamong each other: with a
low overall load, carbon footprint emissions are larger iorenefficient data centers,
because these are the first to be loaded; with a high oveaal| kil the data centers are
highly utilized and the least efficient are those that cahedétghest carbon emissions.



5 Conclusions

This paper has presented EcoMultiCloud, a hierarchicalegmh that aims to improve
the workload management of a multi-site data center. Thata@larchitecture com-
prises two layers, the upper layer for the assignment/ridgraof workload among
remote sites, and the lower layer that assigns Virtual Maehio physical hosts within
every local site. The approach is flexible and can be utilizedchieve and balance
different goals, among which reductions of costs/consuarettgy/carbon emissions,
load balancing, etc. The paper has focused on the analyai$onfr-site system in the
case that the goals to be achieved are the reduction of carb@sions and the load
balancing among data centers. Performance analysis haerptioat the hierarchical
approach achieves nearly the same quantitative resultsedsrance centralized solu-
tion, but offers better functionalities in terms of flexibil— it can be adapted to the
specific goals specified by the management — and autonomypglésilata centers, as
they are free to adopt any internal algorithm for workloachagement.
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