
Self-economy in Cloud Data Centers: Statistical

Assignment and Migration of Virtual Machines

Carlo Mastroianni1, Michela Meo2, and Giuseppe Papuzzo1

1 ICAR-CNR, Rende (CS), Italy
{mastroianni,papuzzo}@icar.cnr.it

2 Politecnico di Torino, Italy
michela.meo@polito.it

Abstract. The success of Cloud computing has led to the establish-
ment of large data centers to serve the increasing need for on-demand
computational power, but data centers consume a huge amount of electri-
cal power. The problem can be alleviated by mapping virtual machines,
VMs, which run client applications, on as few servers as possible, so that
some servers with low traffic can be put in low consuming sleep modes.
This paper presents a new approach for the adaptive assignment of VMs
to servers and their dynamic migration, with a twofold goal: reduce the
energy consumption and meet the Service Level Agreements established
with users. The approach, based on ant-inspired algorithms, founds on
statistical processes: the mapping and migration of VMs are driven by
Bernoulli trials whose success probability depends on the utilization of
single servers. Experiments highlight the two main advantages with re-
spect to the state of the art: the approach is self-organizing and mostly
decentralized, since each server locally decides whether or not a new VM
can be served, and the migration process is continuous and adaptive,
thus avoiding the need for the simultaneous reassignment of many VMs.

1 Introduction

The need for on-demand computing, i.e., the possibility of using computational
resources on a pay-as-you-go basis, was identified many years ago, but so far
it is has been hindered by technological constraints. Recently, the availability
of powerful data centers and high bandwidth connections have expedited the
success of the Cloud computing paradigm, which is making on-demand com-
puting a common practice for many enterprizes and scientific communities. The
main advantage of this paradigm is that a company does not need to operate
its own data center, with all the related costs and administration burdens, but
can access to CPU power, storage facilities, software packages on the basis of
current needs. For example, a Web server operated by a company can be hosted
by a Cloud center, a choice that has many advantages in addition to money
savings, among which higher security and availability guarantees (anti-hacker
and back up procedures are managed by IT professionals), and much lower or
even zero risks of under- or over-provisioning of resources. These advantages are
particularly welcome by small companies, especially in their start up phase [3].

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 405–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

406 C. Mastroianni et al.

One of the main issues related to the success of Cloud computing is that
the ever growing number of large data centers is causing a notable increase
of electrical power consumed by hardware facilities and cooling systems. This
increases the cost of computation itself and affects the carbon footprint of data
centers, thus aggravating, on the global scale, the problem of global warming.
It has been estimated that in 2006 the energy consumed by IT infrastructures
in USA was about 61 billion kWh, corresponding to 1.5% of all the produced
electricity, and these figures are expected to double by 2011 [2].

A major reason for this huge amount of consumed power is the inefficiency
of data centers, which are often under-utilized: it has been estimated that only
20-30% of the total server capacity is used on average [1]. Despite the adoption
of techniques that try to scale the energy consumption with respect to the actual
utilization of a computer (for example, Dynamic Voltage and Frequency Scal-
ing or DVFS), an idle server still consumes approximately 65-70% of the power
consumed when it is fully utilized [8]. To cope with this problem, Cloud data
centers exploit the virtualization paradigm: user processes are not assigned di-
rectly to servers, but are first associated with Virtual Machine (VM) instances,
which, in turn, are run by servers. The use of virtualization allows heterogeneous
platforms to be executed on any kind of hardware facility, which facilitates the
consolidation of VMs, that is, their clustering on as few computers as possible.

Unfortunately, the optimal mapping of VMs to servers, so as to minize en-
ergy consumption, is an NP-hard problem and requires a full knowledge of the
servers load. Centralized algorithms that explore sub-optimal solutions may be
computationally costly, and do not scale well with the size of the system. This
paper presents a self-organizing approach that is partly inspired by the basic
ant algorithms used by Deneubourg et al. [6] to model the phenomenon of larval
clustering in ant colonies. In our case, the approach aims at clustering VMs in
as few servers as possible, using two types of statistical procedures, for the as-
signment and the migration of VMs. Specifically, a new VM is assigned to one
of the available servers through statistical Bernoulli trials for which the success
probability depends on the current utilization of the servers. The assignment
probability function is defined so as to favor the assignment of a VM to a highly
loaded server, in order to improve VM consolidation. On the other hand, the
migration procedure fosters the migration of VMs from servers in which the cur-
rent utilization is either too high or too low, that is, above or below two defined
thresholds. In the first case, the migration of a VM helps to prevent a possi-
ble overload of the server, which may lead to Service Level Agreement (SLA)
violations. In the second case, the objective of the migration is to take VMs
away from lightly loaded servers, and then power off these servers. Migration is
also driven by Bernoulli trials, for which the success probability is defined by
appropriate migration probability functions.

The use of statistical processes has two important advantages: (i) assign-
ment and migration processes are self-organizing and mostly decentralized. The
data center manager coordinates the processes, but decisions are taken locally
by each server on the basis of local information; (ii) the migration process is

Self-economy in Cloud Data Centers 407

continuous and gradual, and the cost of migration (e.g., performance degrada-
tion) is smoothed over time, so that the quality of service perceived by users is
hardly affected. Conversely, several approaches proposed in the literature (e.g.,
[12] and [2]) often require the simultaneous migration of many VMs. These
properties, self-organization and gradual migration of VMs, favor the scalability
of the approach and its capacity to adapt to the dynamic workload of client
applications.

The rest of the work is organized as follows: Section 2 discusses the assign-
ment and migration procedures; Section 3 reports the results of simulation ex-
periments, which prove that the approach succeeds in efficiently consolidating
VMs, and that power consumption is close to the theoretical minimum, while
the number of SLA violations is minimized; Section 4 describes related work,
and Section 5 concludes the paper and proposes some avenues for future work.

2 Assignment and Migration of Virtual Machines

This section describes the statistical procedures used for the assignment of VMs
to the data center servers and for their dynamic migration. The examined sce-
nario is pictured in Figure 1: an application request is transmitted from a client
to the data center manager, which selects a VM that is appropriate for the
application, on the basis of application characteristics such as the amount of
required resources (CPU, memory, storage space) and the type of operating sys-
tem specified by the client. Then, the VM is assigned to one of the available
multi-core servers through the assignment procedure. The workload of the appli-
cation is dynamic, that is, its demand for CPU varies with time, provided that
it does not exceed the VM capacity. This is typical, for example, of Web servers,
for which the CPU demand depends on the workload generated by Web users.
Periodically, each server checks if its CPU utilization is between the specified
upper and lower thresholds and, when this condition is violated, it activates the
migration procedure, in order to move one VM to another server. The parame-
ters λ and μ shown in Figure 1 are, respectively, the arrival rate of application
requests and the service rate of a server core. They will be used in Section 3 for
the performance analysis.

Fig. 1. Assignment and migration of VMs in a data center

408 C. Mastroianni et al.

2.1 Assignment Procedure

Once a client application is associated with a compatible VM, the latter must
be assigned to a server for execution. The choice should take into account the
following considerations: (i) it is preferable to assign the VM to a server with high
CPU utilization, in order to enforce the consolidation of VMs and possibly allow
idle servers to be powered off; (ii) the CPU utilization should not be too close to
the server capacity: in such a case, if the VMs workload increases, the server may
be unable to grant the amount of CPU required by the applications, and SLA
violations may occur; (iii) the VM should be allocated on a powered off server
only when strictly necessary, since switching on a server reduces consolidation
and increases consumed power.

Given these objectives, the assignment procedure is defined as follows. The
data center manager broadcasts the assignment request to servers1. Each active
server executes a Bernoulli trial, whose success probability depends on its current
CPU utilization, u (valued between 0 and 1), and on the maximum allowed
utilization, Ta. The assignment probabilistic function, fassign(u), is null when
u > Ta, otherwise it is defined as:

fassign(u) = 1/Mp · up · (Ta − u) Mp =
pp

(p + 1)(p+1)
· T (p+1)

a (1)

Figure 2 shows the function graph for some values of the integer parameter p,
and Ta = 0.9. The factor 1/Mp is used to normalize the maximum value to 1. The
function definition ensures that the CPU utilization cannot exceed the threshold
Ta (because no further VMs can be assigned when u reaches this threshold)
and that VMs are preferably assigned to highly loaded servers, thus favoring
consolidation. The value of u at which the function reaches its maximum - that
is, the value at which assignment attempts succeed with the highest probability
- is p/(p + 1) ·Ta, which increases and approaches Ta as the value of p increases.
Therefore, the value of p can be used to modulate the shape of the function and
tune the consolidation effort.

Each server for which the Bernoulli trial succeeds, responds to the broadcast
message declaring its availability to accommodate the VM. Then, the data center
manager randomly selects one of these available servers, and assigns the VM
to it. If all active servers are unavailable - because their utilization exceeds the
threshold Ta, or because Bernoulli trials are unsuccessful - an inactive server will
be switched on and will accommodate the VM. If this is not possible, because
all the servers are already active, the VM will be forcedly assigned to any server
that has some spare CPU fraction (such a server may be chosen after a second
broadcast request), or it will be put in a waiting queue: this is a hint that the
number of servers is too low to sustain the load.

1 The broadcast strategy is the most reasonable when all the servers are located in
a single high-speed network. If the servers are grouped in multiple clusters, a more
efficient alternative can be to forward the request only to a subset of servers. The
behavior is nearly equivalent.

Self-economy in Cloud Data Centers 409

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

as
si

gn
m

en
t p

ro
ba

bi
lit

y
fu

nc
tio

n

cpu utilization

p=2
p=3
p=5

Fig. 2. Assignment probability function fassign(u) for different values of the parameter
p. The value of the threshold Ta is set to 0.9.

One of the main advantages of the approach can now be appreciated, that
is, its self-organizing and decentralized nature, since main decisions are taken
locally. The manager is only required to know which servers are active and which
are switched off, and to perform the random selection among the servers that
are available to accommodate a new VM. The manager, though, is not requested
to perform any algorithm to decide how to distribute the VMs to servers, nor to
keep updated information about servers’ state.

2.2 Migration Procedure

The assignment procedure allows VMs to be clustered in a reduced number of
servers, as is shown in the performance evaluation section. Nevertheless, it can
still happen that some servers are under-utilized and might be switched off.
Indeed, even after an efficient allocation of VMs to computing resources, the
VMs running in a server may terminate or may reduce their demand for CPU.
Moreover, overload situations can also occur. In fact, the assignment of a VM to
a server is made on the basis of its current CPU utilization, but the workload of
other VMs in the same server may subsequently increase. This can cause SLA
violations, thus affecting the degree of dependability of the data center and the
quality of service offered to users. In both these situations, some VMs can be
profitably migrated to other servers, either to switch off a server, or to alleviate
its load.

Live migration of VMs is driven by the migration procedure. As opposed to
other techniques recently proposed for VM migration (see the related work sec-
tion), our approach is self-organizing and ensures a gradual and continuous
migration process. At random time intervals, each server checks whether it is
under-utilized or over-utilized and, when this occurs, evaluates the correspond-
ing migration probability function, f l

migrate(u) or fh
migrate(u):

f l
migrate(u) = (1 − u/Tl)α (2)

fh
migrate(u) = (1 +

u − 1
1 − Th

)β (3)

410 C. Mastroianni et al.

In either case, the server performs a Bernoulli trial and decides whether or not
to request the migration of one of the local VMs. The functions, shown in Figure
3, are defined so as to trigger the migration of VMs when the CPU utilization
is, respectively, below the threshold Tl or above the threshold Th. When the
utilization is in between, migrations are inhibited. The shape of the functions
can be modulated by tuning the parameters α and β, which can therefore be
used to foster or hinder migrations. A migration procedure completes when the
VM is successfully assigned to another server, using the assignment procedure
described in Section 2.1. In the case of the migration from an overloaded server,
the threshold Ta of the assignment function is set to 0.9 times the CPU utiliza-
tion of the current server. This ensures that the VM migrates to a less loaded
server, and prevents situations in which a VM is continuously migrated from an
overloaded server to another. The new value of Ta is sent to the other servers
along with the migration request, and the VM is assigned to one of the available
servers. If no server is available, the VM is kept by the original server.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ig

ra
tio

n
pr

ob
ab

ili
ty

 f
un

ct
io

n

cpu utilization

fl, α=1
fl, α=0.25

fh, β=1
fh, β=0.25

Fig. 3. Migration probability functions f l
migrate(u) and fh

migrate(u), labeled as f l and
fh, for two values of α and β. The threshold Tl is set to 0.3, Th is set to 0.8.

3 Performance Evaluation

The approach described in the previous section was tested with a Java simulator
implemented at ICAR-CNR. The evaluated data center has Ns=100 servers, 33
of which have 4 cores, 34 have 6 cores and 33 have 8 cores. All cores have CPU
frequency of 2 GHz. The Virtual Machines that host client applications have
nominal CPU frequencies of 500 MHz, 1 GHz and 2 GHz. They are assigned to
applications with the following probability distribution: 50% of applications are
assigned to 500 MHz VMs, 25% to 1 GHz VMs, and 25% to 2 GHz VMs.

Each VM runs for a time interval generated with a Gamma distribution and
average 1/μ set to 100 minutes, where μ is the service rate of each server core.
During its execution, the application hosted by the VM can require all the VM
capacity or a fraction of it. This fraction can vary over time, as Cloud appli-
cations - in many cases Web servers - usually experience dynamic workload.

Self-economy in Cloud Data Centers 411

For each application, the average interval between workload changes is set to
20 minutes (with Gamma distribution), and after each interval the fraction of
the VM capacity demanded by the application is extracted uniformly between 0
and 1. Requests for client applications are received by the data center manager
at rate λ (see Figure 1), whose value ranges between 1.2 and 24 requests per
minute. The average load of the data center, denoted as ρ, can be computed as
0.5λ/μT . Here, the arrival rate of requests is halved because applications ask on
average for half the capacity of a VM, while μT = μ · Ns · 6 · 2 is the overall
service rate of the data center: indeed, the average number of cores per server is
6, and the capacity of each core (2 GHz) is twice the average frequency of a VM
(1 GHz). The parameter ρ ranges between 0.05 (nearly idle data center) and 1
(data center loaded at its maximum CPU capacity), and will be used to analyze
the system performance in different load conditions. Servers can be dynamically
activated and powered off: an inactive server is switched on when it is asked
to accommodate a new or a migrating VM; an active server is switched off (or
hibernated) when all the running VMs terminate or when they are migrated to
other servers.

To analyze the amount of consumed power, the model described by some
recent studies (e.g., [8] and [2]) is adopted. Specifically, the power consumed by
servers can be obtained with a simple relationship between CPU utilization and
power consumption, assuming that an idle server consumes about 70% of the
power consumed by a fully utilized server. The power consumption is expressed
as P (u) = Pmax · (0.7 + 0.3 · u). In our tests, Pmax, the power consumed at
maximum utilization, is set to 250 W.

Figure 4 reports the average number of active servers, in steady condition, vs.
the system load, when setting the threshold Ta of the assignment function (1) to
0.9, and with the following parameter setting for the migration functions (2) and
(3): Tl=0.2, Th=0.95, α=0.25 and β=0.25. The migration procedure is evaluated
by each server every 10 minutes. The figure reports results obtained with different
values of the parameter p of the assignment function. For comparison purposes,
the results are shown together with three other curves. The first is the average
number of servers activated when each VM is randomly assigned to one of the
servers, regardless of their current utilization. The related curve is by far the
highest, and has a typical negative exponential trend. The VM mapping problem
can be formulated in terms of the bin packing problem, i.e., the NP-hard problem
of allocating objects of heterogeneous sizes in as few bins as possible [12]. The
second curve corresponds to the optimal solution of this problem, i.e., when
the minimum number of servers is used to accommodate the VMs. The curve
labeled as BFD corresponds to the performance achievable when the bin packing
problem is solved with the Best Fit Decreasing algorithm, which has quadratic
complexity and guarantees to use at most 11/9 MIN+1 servers, where MIN is
the minimum number of servers [13].

Figure 4 shows that our approach performs better than the BFD, especially
when the load is high, and that the number of active servers is very close to the
optimal curve. Of course, reducing the number of active servers allows the data

412 C. Mastroianni et al.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

no
. o

f
ac

tiv
e

se
rv

er
s

load, ρ

p=2
p=3
p=5

random
optimum

BFD

Fig. 4. Average number of active servers for different values of the parameter p of the
assignment function. The meaning of the other curves is explained in the text.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

po
w

er
 (

K
W

)

load, ρ

p=2
p=3
p=5

random

Fig. 5. Average power consumed by the data center for different values of the parameter
p of the assignment function

center to save power, as appears in in Figure 5. The “green” behavior of our
approach is testified by the fact that consumed power increases almost linearly
with load. The two figures also show that the performance is not very sensitive
to the value of p, which is a sign of robustness. Nevertheless, larger values of p
can be used to improve consolidation (and reduce power consumption) in high
load conditions, because they increase the probability of allocating a VM to a
highly loaded server. Conversely, a low value of p is preferable when the load is
low. The tuning of p can be done dynamically by the data center manager, by
estimating the overall system load. In the next experiments, the parameter p is
set to 3, as this value ensures a good behavior for all load conditions.

As explained before, VM migrations can be performed either because the uti-
lization of a server is too low or too high. In the following, the migration events
of the two kinds are referred, respectively, as l migrations and h migrations. Any
migration causes a slight performance degradation of the application hosted by
the VM for the time necessary to migrate, which in general is estimated in the

Self-economy in Cloud Data Centers 413

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

l_
m

ig
ra

tio
ns

 a
nd

 s
w

itc
he

s
pe

r
ho

ur

load, ρ

l_migrations
switches

Fig. 6. Frequency of l migrations and server switches vs. load.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

h_
m

ig
ra

tio
ns

 p
er

 h
ou

r

load, ρ

h_migrations

Fig. 7. Frequency of h migrations vs. load.

order of 60 seconds [9]. Similarly, the activation of an off server needs a start
up time and additional power. Therefore, it is important to limit the frequency
of migrations and switches, though a certain number is essential for VM con-
solidation and power reduction. Figure 6 reports the frequencies of l migrations
and server activations experienced in the whole data center. Both frequencies
are inversely proportional to the load. In fact, with high load, most servers are
always active and highly loaded, so both events are impossible or rare. With low
load, many servers are off, and the assignment procedure has more chances to
assign a VM to an inactive server, which is then switched on. Since this server is
initially under-utilized, it will likely attempt a migration procedure in the near
future, which explains the higher migration frequency. Both frequencies are al-
ways lower than 4 events per hour in the whole data center, which is an easily
sustainable burden.

Conversely, the frequency of h migrations, reported in Figure 7, is directly
proportional to the load. The trend is nearly linear, but becomes exponential
when the load approaches the data center capacity: this suggests that new servers
should be acquired when the load exceeds 0.8. Finally, Figure 8 reports the
percentage of time in which the VMs allocated to a server demand more CPU

414 C. Mastroianni et al.

than what the server can provide, which may lead to SLA violations. This index,
in accordance with recent studies [2], is used to measure the QoS level offered
to users. Conditions for potential SLA violations are rare when ρ is lower than
0.8, then their frequency increases rapidly. The figure reports the index values
obtained with and without the use of h migrations, which clearly testifies the
beneficial impact of these events.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

%
 o

f
tim

e
of

 C
PU

 o
ve

r-
de

m
an

d

load, ρ

without h_migr
with h_migr

Fig. 8. Percentage of time in which the VMs require more CPU than that offered by
a server, with and without the use of h migrations

4 Related Work

As the Cloud computing paradigm rapidly emerges, a notable amount of studies
focus on algorithms and procedures that aim at improving the “green” char-
acteristics of Cloud data centers. A common aspect is the use of virtualization
as a means to consolidate applications on as few servers as possible and in this
way reduce power consumption. Some approaches - e.g., [4] and [10] - try to
forecast the demand and aim at determining the minimum number of servers
that should be switched on to satisfy the client requests, so as to reduce energy
consumption and maximize data center revenue. However, even a correct setting
of this number is only a part of the solution: algorithms are needed to decide
how the VMs should be mapped to servers in a dynamic environment, and how
live migration of VMs can be exploited to unload servers and switch them off
when possible, or to avoid SLA violations.

As mentioned in Section 3, the problem of dynamically mapping VMs to
servers is in some way similar to the bin packing problem, and the analogy is
indeed exploited in recent research, for example in [12] and in [2]. Live migra-
tion of VMs between servers is adopted in [2] and by the VMWare Distributed
Power Management system, using lower and upper utilization thresholds to en-
act migration procedures. All these approaches represent important steps ahead
for the deployment of green-aware data centers, but still they share a couple of
notable drawbacks: (i) the centralized manager is required to execute complex
algorithms and solve a problem that is inherently NP-hard, and must always be
aware of the state of all the servers, which becomes an issue in large and highly

Self-economy in Cloud Data Centers 415

dynamic data centers; (ii) mapping strategies may require the concurrent mi-
gration of many VMs, which can cause considerable performance degradations
during the reassignment process. Conversely, the approach presented here is self-
organizing, decentralized for the most part (assignment and migration decisions
are taken autonomously by each server), and uses a gradual migration process.

Bio-inspired algorithms and protocols are emerging as a useful means to man-
age distributed systems. Assignment and migration procedures presented here
are partly inspired by the pick and drop operations performed by some species
of ants that cluster items in their environment [6]. The pick and drop paradigm,
though very simple and easy to implement, has already proved to be surprisingly
powerful: for example, it was used to cluster and order resources in P2P net-
works, in order to facilitate their discovery [7]. Another ant-inspired mechanism
was proposed in [5]: in this study, the data center is modeled as a P2P network,
and ant-like agents explore the network to collect information that can later
be used to migrate VMs and reduce power consumption. Since the mapping of
VMs to servers is essentially an optimization problem, evolutionary and genetic
algorithms can also represent a valid solution. In [11], a genetic algorithm is
used to optimize the assignment of VMs, and minimize the number of active
servers. The main limitations of this kind of approach are the need for a strong
centralized control and the difficulties in the setting of key parameters, such as
the population size and the crossover and mutation rates.

5 Conclusion and Future Work

This paper presents an approach that aims at minimizing the number of active
servers and reducing power consumption in Cloud data centers. The core of the
proposal stands in the statistical and self-organizing procedures that are used
to assign Virtual Machines to servers, and to migrate them when this helps ei-
ther to power off under-utilized computers or to prevent possible SLA violations
in highly loaded servers. Simulation experiments show that the adopted tech-
niques succeed in the combined objective of reducing power consumption and
ensuring a good level of the QoS experienced by users, but the novelty of the
approach requires further research to better assess its performance and explore
its potentialities. Some of the avenues are: (i) a deeper analysis of the sensitivity
to parameter values; (ii) a study of scalability properties; preliminary evalua-
tions are promising, as performance seems to improve with the data center size,
which is not surprising given the statistical nature of the algorithms; (iii) adapt
assignment and migration procedures to take into account not only the CPU
utilization of servers, but also other aspects such as the necessity of assigning
several VMs to the same server, when they need to cooperate with each other;
(iv) the definition of mathematical models, which may help in giving a more
formal foundation to the approach.

416 C. Mastroianni et al.

References

1. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Com-
puter 40(12), 33–37 (2007)

2. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: 10th IEEE/ACM Int. Symp. on Cluster Computing and the Grid,
CCGrid 2010, pp. 577–578 (2010)

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Compututer Systems 25(6), 599–616 (2009)

4. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Manag-
ing server energy and operational costs in hosting centers. SIGMETRICS Perform.
Eval. Rev. 33(1), 303–314 (2005)

5. Dubois, D.J., Mirandola, R., Barbagallo, D., Di Nitto, E.: A bio-inspired algo-
rithm for energy optimization in a self-organizing data center. In: Self-Organizing
Architectures. Springer, Heidelberg (2010)

6. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting: robot-like ants and ant-like robots. In: First
International Conference on Simulation of Adaptive Behavior on From Animals to
Animats, pp. 356–363. MIT Press, Cambridge (1990)

7. Forestiero, A., Mastroianni, C., Spezzano, G.: So-grid: A self-organizing grid fea-
turing bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive
Systems 3(2) (May 2008)

8. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–
73 (2009)

9. Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., Sekiguchi, S.: A live storage migra-
tion mechanism over wan for relocatable virtual machine services on clouds. In: 9th
IEEE/ACM Int. Symp. on Cluster Computing and the Grid, CCGrid 2009 (2009)

10. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via
energy aware allocation policies. In: 10th IEEE/ACM Int. Symp. on Cluster Com-
puting and the Grid, CCGrid 2010, pp. 131–138 (2010)

11. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration
with performance guarantee for energy-efficient large-scale cloud computing data
centers. In: 2010 IEEE Int. Conference on Services Computing, SCC 2010, Miami,
Fl, USA, pp. 514–521 (July 2010)

12. Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware applica-
tion placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)

13. Yue, M.: A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, for all
L for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4),
321–331 (1991)

	Self-economy in Cloud Data Centers: Statistical Assignment and Migration of Virtual Machines
	Introduction
	Assignment and Migration of Virtual Machines
	Assignment Procedure
	Migration Procedure

	Performance Evaluation
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

